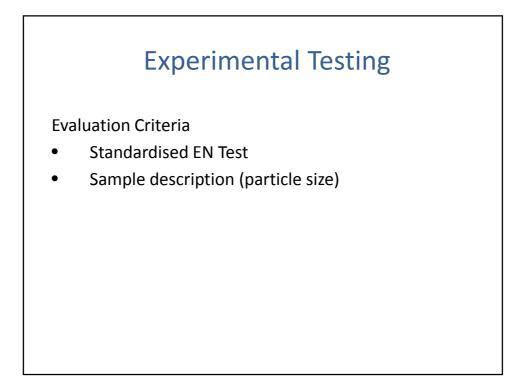
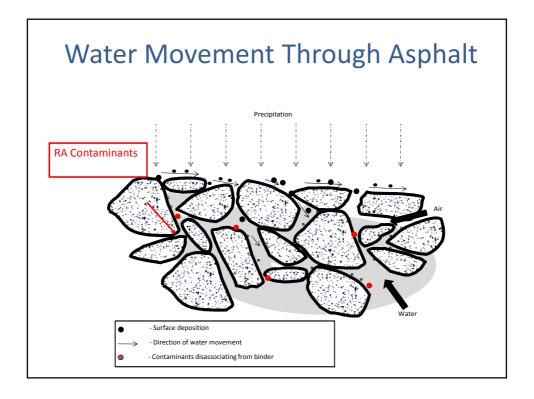
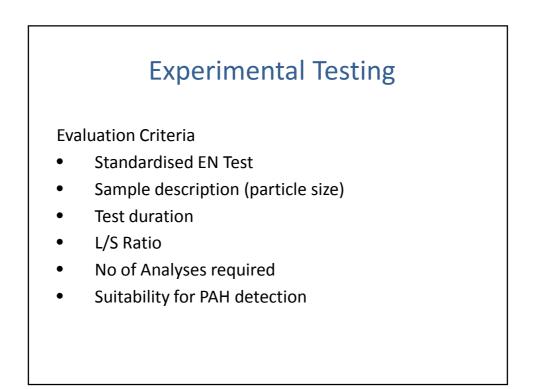


Overview

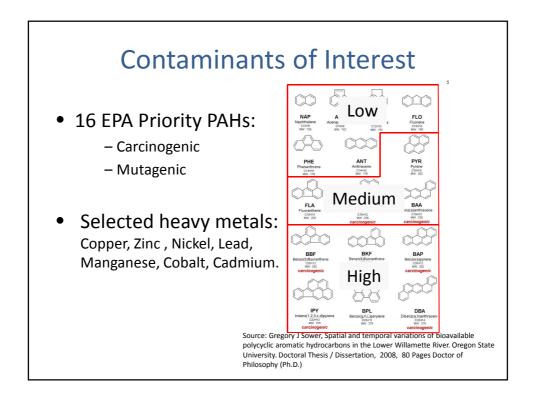
- Focus on leaching behaviour
- Identified tasks included:
 - Selection of appropriate test methods
 - o Selection of appropriate materials
 - o Testing
 - o Evaluation

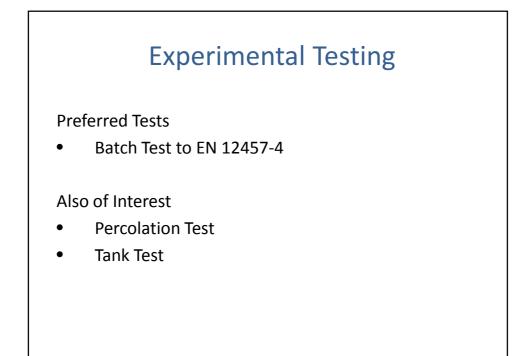

Experimental Testing

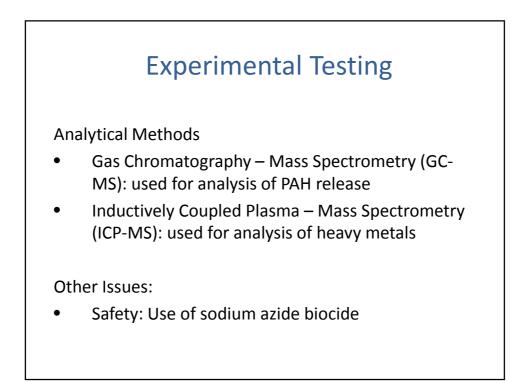

Key Issue: No clear test for characterising leaching behaviour of cold recycled materials


- Evaluation of existing tests required
- Assessment of suitability for cold recycled materials

Potential Tests were:

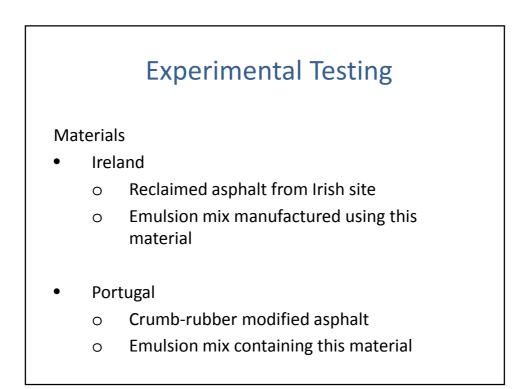

- Batch Test: EN 12457-4
- Batch Test: ISO/TS 21268-1
- Percolation Test:
 - o Draft Method CEN TC 351
 - o CEN/TS 14405
- Tank Test
- EN 1744-3
- ER-H (Re-circulating column)




4

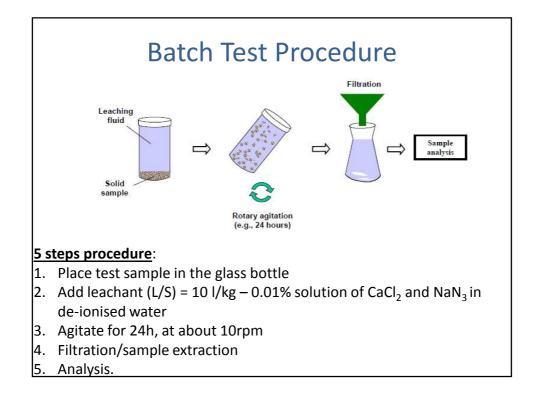
Exi	perir	nental	lestin	g	
Test Method	EN Test	Max Particle Size (mm)	Duration (days)	L/S Ratio	No of Analyses
Batch Test: EN 12457-4	Yes	10	1	10	1
Batch Test: ISO/TS21268	No	4	1	2	1
Percolation Test: - CEN TC 351 - CEN/TS 14405	No	10	≈ 28-30	10	7
Tank Test	No	Monolith	64	-	8
EN 1744-3	Yes	32	1	10	1
ER-H	No	-	7	2	1

5

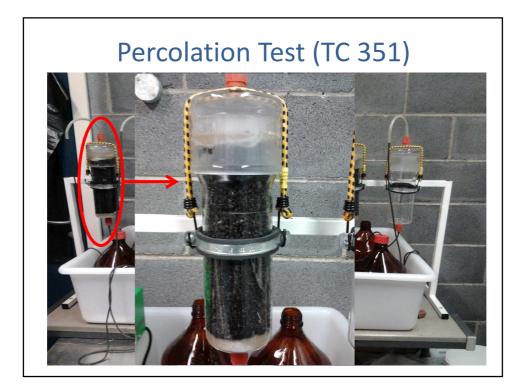

Materials:

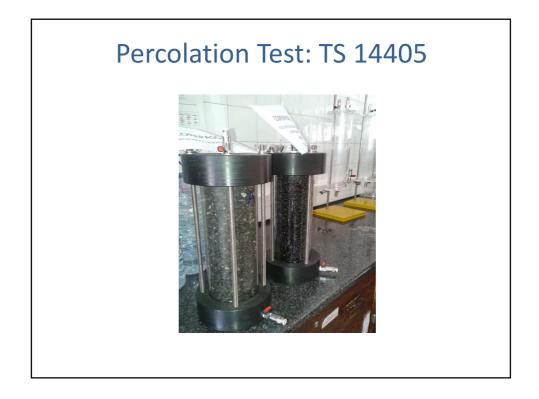
- Tar containing asphalt
 - o Evaluate encapsulation effect
 - o Site-sourced material
- Crumbed rubber modified asphalt

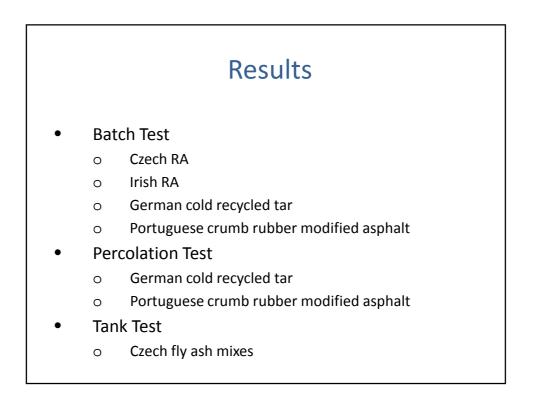
Materials


- Germany
 - Tar material, cold recycled in 1991
 - Cores extracted for CoRePaSol
 - Cold recycled tar base course
 - Cold recycled tar base & binder course
 - o Emulsion mix using cold recycled tar base

Material Preparation


- Based on Re-Road experience
- Large pieces gently heated (≈80°C)
- Crumbled when warm
- Frozen at -20°C for 8 12hrs
- Passed through jaw crusher
 ≤ 10mm particle size





Percolation Test

- 10 mm particles are packed into 3 glass columns in five separate layers; + 1 blank column
- Upflow test, continuous linear velocity of 15 ± 2 cm/day (measured through an empty column)
- Test duration is approximately 30 days, concluding once a terminal, cumulative liquid-to-solid (L/S) ratio of 10 l/kg was achieved.
- Samples taken at 7 discrete intervals

	Quantity Leached (μg/l)		Detection	ached (µg/l)
Compound	Limit (µg/l)	B1: Czech RA	B6: Foam Mix with Czech RA	
Naphthalene	<0.014	0.095	2.078	
Acenaphthylene	<0.013	<0.013	<0.013	
Acenaphthene	<0.013	0.025	0.106	
Fluorene	<0.014	0.016	0.082	
Phenanthrene	<0.011	0.029	0.234	
Anthracene	<0.013	<0.014	<0.015	
Fluoranthene	<0.012	0.037	0.110	
Pyrene	<0.013	0.037	0.060	
Benzo(a)anthracene	<0.015	0.008	0.018	
Chrysene	<0.011	0.008	0.018	
Benzo(bk)fluoranthene	<0.018	0.021	0.021	
Benzo(a)pyrene	<0.016	0.013	0.007	
Indeno(123cd)pyrene	<0.011	0.008	<0.011	
Dibenzo(ah)anthracene	<0.01	<0.01	<0.01	
Bonze(ghi)perylene	-0.011	0.013	< 0.011	

Batch	Test:	Irish	RA
Daten	icst.	111311	

	Detection	C	Quantity Leached (μg/l)
Compound	Limit (µg/l)	B2: Irish RA	B7: Foam Mix with Irish RA	B8: Emulsion Mix with Irish RA
Naphthalene	<0.014	10.593	0.904	4.508
Acenaphthylene	<0.013	0.286	0.266	0.089
Acenaphthene	<0.013	18.387	5.419	5.507
Fluorene	<0.014	7.133	2.225	2.127
Phenanthrene	<0.011	18.950	8.535	3.975
Anthracene	<0.013	2.498	1.978	0.436
Fluoranthene	<0.012	11.605	9.557	0.793
Pyrene	<0.013	9.415	8.888	0.516
Benzo(a)anthracene	<0.015	3.289	4.130	0.047
Chrysene	<0.011	3.375	4.577	0.066
Benzo(bk)fluoranthene	<0.018	5.868	10.884	0.052
Benzo(a)pyrene	<0.016	4.203	7.414	0.038
Indeno(123cd)pyrene	<0.011	2.551	6.401	0.019
Dibenzo(ah)anthracene	<0.01	0.246	0.510	<0.01
Benzo(ghi)perylene	<0.011	2 881	5.987	0.028
PAH 16 Total	<0.195	101.26	77.68	18.20

Detection Limit (μg/l) <0.013 <0.013 <0.014 <0.011 <0.013	B3: German Cold Recycled Tar base 3.811 0.188 5.115 2.923 10.170	B4: As B3, with Binder Course 0.999 <0.013 <0.013 <0.014	B9: Foam Mix containing B3 as aggregate 0.066 0.078 0.157 0.072	B10: Emulsion Mix containing B3 as aggregate <0.014 <0.013 2.030 <0.014
<0.013 <0.013 <0.014 <0.011	0.188 5.115 2.923	<0.013 <0.013	0.078 0.157	<0.013 2.030
<0.013 <0.014 <0.011	5.115 2.923	<0.013	0.157	2.030
<0.014 <0.011	2.923			
<0.011		<0.014	0.072	<0.014
	10.170			
<0.013		1.027	0.707	14.604
	0.321	0.263	0.353	2.371
<0.012	4.927	2.046	3.923	19.498
<0.013	2.786	1.829	4.322	13.088
<0.015	1.328	1.535	2.624	10.990
<0.011	1.302	1.529	3.045	12.248
<0.018	1.972	2.854	6.855	18.916
<0.016	1.086	1.524	3.811	9.864
<0.011	0.582	1.115	2.506	6.295
<0.01	0.129	<0.01	0.640	0.793
<0.011	0.394	0.970	1.858	0.050
	<0.011 <0.018 <0.016 <0.011 <0.01 <0.01	<0.011	<0.011	1.302 1.529 3.045 <0.011

Comparison: German Cores

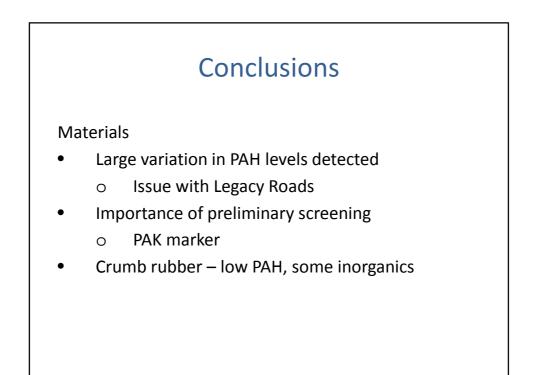
Parameter	Quantity Leached (µg/l)							
Farameter	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Average		
			Original Coal	Tar Asphalt				
PAH 16	98.7	119.4	194.9	112.0	102.8	125.6		
PAH 6	66.3	70.0	110.0	64.0	58.3	73.7		
Benzo(a)pyrene	18.0	20.0	29.0	17.0	17.0	20.2		
Cold Recycled Tar (conducted in 1991)								
PAH 16	14.2	23.6	37.2	45.7	17.1	27.6		
PAH 6	7.9	11.8	18.6	23.6	9.2	14.2		
Benzo(a)pyrene	2.0	2.8	4.0	4.6	1.8	3.0		
Cold Recycled Tar (conducted in 2014)								
PAH 16	38.71	35.18	37.21			37.03		
PAH 6	9.50	8.32	9.06			8.96		
Benzo(a)pyrene	1.18	0.97	1.11			1.09		

Delverelle Anemetice	QL (GC-MS)	B5 (RAR) leachate	B11 (RAR-BE) leachate
Polycyclic Aromatics Hydrocarbons	(µg/l)	(µg/l)	(µg/l)
Naphthalene	0.100	<0.100	<0.100
Acenaphthylene	0.010	<0.010	<0.010
Acenaphthene	0.010	<0.010	<0.010
Fluorene	0.020	<0.020	<0.020
Phenanthrene	0.030	<0.030	0.032 ^(a)
Anthracene	0.020	<0.020	<0.020
Fluoranthene	0.030	<0.030	<0.030
Pyrene	0.060	<0.060	<0.060
Benz(a)anthracene	0.010	<0.010	<0.010
Chrysene	0.010	<0.010	<0.010
Benzo(b)fluoranthene	0.010	<0.010	<0.010
Benzo(k)fluoranthene	0.010	<0.010	<0.010
Benzo(a)pyrene	0.020	<0.020	<0.020
Indeno(1.2.3.cd)pyrene	0.010	<0.010	<0.010
Benzo(g.h.i)perylene	0.010	<0.010	<0.010
Dibenz(a.h)anthracene	0.010	<0.010	<0.010
Sum of 16 PAH	0.370	<0.370	<0.370

Batch Test: Portuguese CRMA

	Limit values for waste	B5 (RAR) l	eachate	B11 (RAR-BE) leachate		
Metals	acceptable at landfills for inert waste (L/S=10 l/kg)	Analysed by ICP-AES	Evaluation	Analysed by ICP-AES	Evaluation	
	(mg/kg dry substance)	(mg/kg)		(mg/kg)		
Cadmium, Cd	0.04	<0.02	✓	<0.02	~	
Cobalt, Co	-	<0.20	(n/a)	<0.20	(n/a)	
Copper, Cu	2	<0.13	· · · ·	<0.13	~	
Lead, Pb	0.5	<0.09	· ·	<0.09	~	
Manganese, Mn	-	<0.13	(n/a)	<0.13	(n/a)	
Nickel, Ni	0.4	<0.06	~	<0.06	✓	
Zinc, Zn	4	<0.06		0.26	~	

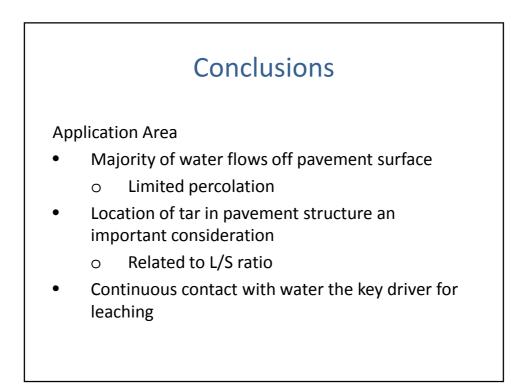
Percolation Test: German Cores


Sample Data:

		Quantity Leached (µg/kg)							
Compound	1st Extraction	2nd Extraction	3rd Extraction	4th Extraction	5th Extraction	6th Extraction	7th Extraction		
Naphthalene	0.52	0.96	6.77	2.97	10.24	23.46	59.40		
Acenaphthyle ne	0.04	0.06	0.33	0.13	0.23	0.50	0.60		
Phenanthrene	0.26	0.64	4.03	2.08	6.39	14.72	40.70		
Pyrene	0.05	0.09	0.59	0.33	0.94	1.79	4.52		
Benzo(a)anthr acene	0.01	0.01	0.06	0.04	0.12	0.18	0.40		
Chrysene	0.01	0.01	0.07	0.04	0.12	0.21	0.47		
Benzo(bk)fluo ranthene	0.01	0.00	0.01	0.01	0.04	0.05	0.15		
Benzo(a)pyre ne	0.00	0.00	0.01	0.01	0.03	0.03	0.09		

Percolation Test: Portuguese CRMA

Polycyclic Aromatics Hydrocarbons	QL by GC-MS	P2 (RAR) leachate 1 st fraction volume (on a total of seven); (L/S=0.1 l/kg)	P3 (RAR-BE) leachate 1 st fraction volume (on a tota of seven); (L/S=0.1 l/kg)
	(µg/l)	(µg/I)	(µg/l)
Naphthalene	0.100	<0.100	<0.100
Acenaphthylene	0.010	<0.010	<0.010
Acenaphthene	0.010	<0.010	<0.010
Fluorene	0.020	<0.020	<0.020
Phenanthrene	0.030	<0.030	<0.030
Anthracene	0.020	<0.020	<0.020
Fluoranthene	0.030	<0.030	<0.030
Pyrene	0.060	<0.060	<0.060
Benz(a)anthracene	0.010	<0.010	<0.010
Chrysene	0.010	<0.010	<0.010
Benzo(b)fluoranthene	0.010	<0.010	<0.010
Benzo(k)fluoranthene	0.010	<0.010	<0.010
Benzo(a)pyrene	0.020	<0.020	<0.020
Indeno(1.2.3.cd)pyrene	0.010	<0.010	<0.010
Benzo(g.h.i)perylene	0.010	<0.010	<0.010
Dihenz(a h)anthracene	0.010	<0.010	<0.010
Sum of 16 PAH	0.370	<0.370	<0.370


Leaching of	Sample	Sample	Sample	вмр	Leaching from
analysed elements (mg/m²)	T1	T2	T3	64 days	Landfilled waste(*) (64 days)
Chloride	2 810	2 553	2 516	-	10 000
Sulfate	2 390	71 397	126 308	27 000	10 000
Arsenic	0.45	9	2.48	41	1.3
Cadmium	0.09	0.086	0.085	1.1	0.2
Chromium	0.6	0.6	0.6	140	5
Copper	4.3	4	3.6	51	45
Mercury	0.03	0.03	0.02	0.4	0.1
Nickel	0.9	0.9	0.8	50	6
Lead	0.2	0.31	0.3	120	6
Zinc	8.3	5.2	6.1	200	30

Conclusions

Encapsulation effect

- Present, but not proven
 - German tar cores (1991 vs 2014)
 - o Portuguese CRMA
- Sample preparation an issue

Conclusions

Test Methods

- No ideal method for assessing PAH release
 - o TC 351 equilibrium not reached
 - Tank test good for inorganics
 - o Batch test
- Sample preparation/test set-ups available do not reflect in-service application of materials