CEDR – Transnational Programme 2012: Recycling

Workshop, Praha, 24.-25.9.2015

Environmental Impact in Terms of Carbon Footprint and Eco-balance Cold Recycling Pavement Technology

Jan Valentin – Faculty of Civil Engineering, CTU in Prague (CZ) Vaclav Snizek – Faculty of Civil Engineering, CTU in Prague (CZ) Michael Engels – Wirtgen GmbH (GE)

This presentation has been supported by the research project COREPASOL carried out as part of the CEDR Transnational Road research Programme Call 2012. The funding for the research was provided by the national road administrations of Belgium (Flanders), Denmark, Finland, Germany, Ireland, Netherlands, Norway, Sweden and UK.

Tools for carbon footprint assessment and for LCA today

Original intention within CoRePaSol

- Identification of some suitable tools which exists in Europe, modify, imply and complement them with respect to cold recycling technologies;
- Analysis of pavement cold recycling techniques with respect to calculation of emission content (CO₂, NOx, HC, CO and particle matters);
- Originally project CEREAL was understood as a suitable candidate (tool Carbon RoadMap);
- Later discussions about UK's asPECT;
- Condition was to incorporate detailed data of construction machines (comparison of various classes of EPA/TIER).

Tools for carbon footprint assessment and for LCA today

Specifics of carbon footprint of machinery used

European Union other and countries in the world did major progress in limitation of emissions of construction machineries. Beside the emissions of CO₂ there had been introduced maior limitations to carbon monoxide CO, NOx, HC and fine particle matters in the last years. This legislation is known as TIER4 interim (final) /EPA IV interim (final) standard. It is forced by the directive 97/68/EC.

Actual situation in the area of carbon footprint and LCA tools

Existing software applications

- Cooperation and use of CEREAL project solution failed;
- Extensive review with the target to summarize pros and cons of some existing calculators used in the field carbon footprint assessment in road engineering within Europe;
- Review supplemented by experience and knowledge from experts (real practice);
- In total 17 tools (software) were described, whereas nine were subjected to detail analysis.

(RoadMap CEREAL; asPECT; Afwegingsmodel wegen; AggRegain CO2e; ROAD-RES; DuboCalc; JouleSave; GreenDOT; PaLATE; WLCO2T; SEVE; CHANGER; Ecologiciel (Colas); CO2NSTRUCT; LCI Model; HDM-4; VETO).

CEST

centre for effective and sustainable transport infrastructure

Actual situation in the area of carbon footprint and **LCA tools**

Software name	Advantages (+)	Disadvantages (-)				
RoadMap CEREAL	+ accessibility of the database+ open architecture	 not yet available due to technical problems did not calculate deeply with 				
asPECT (UK)	+ accessibility of the database	recycling techniques - needs large amount of data				
AfwegingsModel Wegen (NL)	 + transparent and simple + includes maintenance the possibility to use updated data 	- impossible to add data into existing database				
AggRegain / ESRSA (UK)	+ accessibility of the database	 needs large amount of input detailed data 				
ROAD-RES (DK)	+ good methodological structure	 needs large amount of input detailed data 				
DuboCalc (NL)	+ complexity of the database	- non-transparent process of results calculation				
JouleSave (EU)	+ includes the effect of interaction between the roadway and traffic load	 needs detailed knowledge of roadway design parameters 				
GreenDOT (US)	+ good design and ergonometrics	- applicable in the US				
PaLATE (US)	+ good design/structure and ergonometrics	- applicable in the US				
WLCO2T (UK)	+ useful database based on Price Book (UK)					

Actual situation in the area of carbon footprint and LCA tools

What have we learnt from existing apps?

- Usually closed (i.e. non-transparent with respect to used calculation principles and the possibility to add new data);
- ➡ Require big data contents and are often complex;
- Usually concentrate on new structures and do not take into account maintenance and rehabilitation on the whole range;
- European models have in general problem to present brief and explicit result, US models are in this respect more accommodating;;
- European carbon footprint models contain high scores of useful data, which we are so far not able to fully exploit;
- Particular apps are specific with respect to their origin. E.g. DuboCalc contains detailed information about the situation in Denmark, asPECT and ROAD RES contains detailed information from the UK and Scandinavia, etc.

prostivo softwaro application – somo facts

OptiRec – alternative software application – some facts

- Traditional calculation of the carbon footprint and greenhouse gas emissions and quantification of the impacts on the total life cycle costs.
- Tool uses stochastic methods for calculations of total CO₂ emissions and other air pollutants.
- Selection of appropriate recycling technology.
- ➡ Wide machine database:
 - own made & modified (close cooperation with one of the key machinery producers)
 - recyclers, compactors, rollers, graders, trucks, tankers
- ➡ User guide.
- ➡ Machine & Material catalogue.
- Practical examples (case study).
- Excel-based software application (current status).
- Further development and update expected.

OptiRec/OptiRoad – covered topics

Current

- Cement based cold recycling (cement slurry)
- Pulverization
- Cold recycling bituminous emulsion
- Cold recycling foamed bitumen
- Cold recycling bitumen and hydraulic binder combination
- Cold milling with new paving of asphalt layers
- Pavement overlay
- Hot recycling (in progress now)

Future

- Soil stabilization
- Further extension based on users request

centre for effective and

Future app extensions

- On-line app
- Shared database
- Sample project in database
- Graphs and statistics
- Language mutations
- Time planning

C centre for effective and sustainable transport infrastructure

OptiRec – Basic specification of project

BASIC SPECIFICATION OF THE ROAD:

Road location:	Europe		
Country:	Czech Republic	DETAIL SPECIFICATION OF M	ACHINE SET:
Road classification:	Expressway	Operator gross salary [€/hr]	12,00
Pavement structure type:	Asphalt pavement	Worker gross salary [€/hr]	10,00
Length [m]:	1200,00	Diesel fuel price [€/l]	1,28
Width avg. [m]:	4,75	Key machine occupancy (recycler) [%]	75
Thickness of reconst. layers) [mm]:	150	Staff occupancy [%]	100
Thickness of new wearing course [mm]:	50	Annual use of key machine [hrs]:	1 334
Distance to mixing plant/center [km]:	50		
Carriers emisson category:	Euro 5		

C_RP_S

centre for effective and sustainable transport

infrastructure

CEST

OptiRec – Technical specification and material inputs

REHABILITATION CHARACTER

Way of Rehabilitation	Cold Recycling - foamed bitur	nen		
Stabilisers (pre spreaded or mixed-in)	Cement (pre-spreaded)			
Overall Character of Machines in use*	Eco-friendly			
A	OMIXTURES			
Foa pric	amed bitumen: ce [€/t] 410	Volume added	[%]	2,50
Bitu pric	umen emulsion: ce [€/t] 393	Volume added	[%]	2,50
Wat	ter: ce [€/m3] 1	Volume added	[%]	1,00
Cen	ment 32,5 R: ce [€/t] 72	Volume added	[%]	0,50

OptiRec – Example of material data

Substance	Density (t/m³)	CO ₂ (kg/l)	Data source
Diesel – refining	0.84	0.26	Afteroilev
Diesel – consumption	0.84	2.66	Czech Ministry of Environment

Mix component	Density	CO ₂	Data
	(t/m³)	(kg/t)	source
Water	1.00	0.30	IVL
Cement CEM II 32.5 R	1.25	980	IVL
Bituminous emulsion (C60B7)	1.00	221	Eurobitume
Foamed bitumen	1.10	285	Eurobitume

CREPASOI Haracterization of advanced cold recycling bitumen stabilized pavement solutions

OptiRec – machine set selection

- CR (cold recycling) foamed bitumen, cement
- CR (cold recycling) foamed bitumen, cement slurry
- CR (cold recycling) bitumen emulsion, cement
- CR (cold recycling) bitumen emulsion, cement slurry

- CR (cold recycling) foamed bitumen
- CR (cold recycling) bitumen emulsion
- R (recycling) cement
- R (recycling) cement slurry
- Pulverization or Re-shaping

OptiRec – machine set selection

Average consumption of machines in the case study (I/m²)

Construction machine	Fuel	Consumption (I/m ²)	CO ₂ (t/m ²)*
Binding agent spreader	diesel	0,0022	6.502E-06
Water tanker	diesel	0,0046	1.356E-05
Bitumen tanker	diesel	0,0052	1.520E-05
Recycler (WR 240i)	diesel	0,0788	2.302E-04
Padfoot compactor	diesel	0,0077	2.276E-05
Vibratory compactor	diesel	0,0077	2.276E-05
Grader	diesel	0,0109	3.204E-05
Tandem roller	diesel	0,0077	2.276E-05
Static roller	diesel	0,0070	2.071E-05

 \Rightarrow average CO₂ production (t/m²)

centre for effective and sustainable transport infrastructure

CEST

OptiRec – Results example

											1	2	3	4
No.	Way of rebahilitation		Кеу	machine		Price			Duratio n[h]	Energy [xx.]	CO2 [t]	HC+NOx CO (g/KWh (g/))	/KWh	PM (g/KWh
1	Cold Recycling with pre-spreaded cement and for	amed bitume	en Wirt	gen WR 240 (3	Brd)			24 199,45 €	7,62		19,7	3,92 (5,24	0,04
													11-2:	
Machine	3	Total fuel and Total machine Total staff liquids cost cost (in) cost [EUR] [EUR] [EUR]			Total ma + Staff [EUI	achine cost R]	2/3 Engine power [kW]	Idling Engine power [kW]	CO2 [t CO2]	Nox 4 (cum	HC [t]	CO [t]	Part [t]	icles
Wirtgen	WR 240i (3rd) (2,4m)	603,95	482,64	167,62	12	254,20	447,00	135,00	1,195	3	3,923	6,2413	3 0,0	0446
StreuMa	ister SW 16 MC (MB Arocs 4136K 8x4 chassis, 4-axle) (16m	17,16	17,5	19,16		53,89	275,00	50,00	0,03	4	0,58:	L 0,3577	7 0,0	0048

	Fuel cons	umption	CO ₂ pro	oduction	
Construction machine	Average (l/h)*	Total (I)	Average (t/h)*	Total CO2 (t)	
Recycler (WR 200, 3rd)	50	517,360	0,151	1,511	
Recycler (WR 200i, 4rd)	47	486,320	0,142	1,420	
Recycler (WR 2400, 1st)	67	396,150	0,202	1,157	generations
Recycler (WR 2500S, 2nd)	70	362,150	0,212	1,058	

OptiRec – Results example

- In case of road rehabilitation by using one of existing cold recycling technologies, there are 80-90 % of CO₂-emissions produced during the manufacturing of incorporated materials (RAP).
- Impact of used recycling machines of the road remains minor (10-20 %). This fact does not mean that it has an insignificant influence.
- Construction industry has primarily to look for avoiding emissions produced during production and processing of building materials by supporting re-use of once build-in materials.

OptiRec – second generation – Visual Basic platform

υρτικές
Road Machine Rehabilatation Admixtures
BASIC SPECIFICATION
OF THE ROAD:
Road location:
Country:
· · · · · · · · · · · · · · · · · · ·
Road classification:
Pavement structure type: • •
length [m]:
Width avg. [m]:
Thickness of reconst. layers) [mm]:
TThickness of new wearing course [mm]:
Preview Next
· · · · · · · · · · · · · · · · · · ·

	: : : : : : : : : : : : : : : : : : : :
OptiRec	
Road Machine Rehabilatation Admixtures	
DETAIL SPECIF	ICATION
OF MACHINE	SET:
Operator gross salary [€/hr]:	
	<u></u>
Worker gross salary [€/hr]:	
	·····
Diesel fuel price [€/l]:	
Key machine occupancy (recycler) [%]:	
	· · · · · · · · · · · · · · · · · · ·
Staff occupancy [%]:	
	· · · · · · · · · · · · · · · · · · ·
Annual use of key machine [hrs]:	
	<u></u> i:::::
Distance to mixing plant/center [km]:	
	······································
Carriers emisson category:	
· · · · · · · · · · · · · · · · · · ·	····················
Preview	Next

OptiRec – machinery catalogue

Zdroj: Archiv autora

Samohybný recyklér Wirtgen WR 200i slouží pro recyklaci živičných vozovkových vrstev za studena. Lze jej využít i pro stabilizaci zemin.

Tento recyklér disponuje výkonnou silniční frézou a mísícím zařízením s možností připojení zásobníku či cisterny s asfaltovou emulzí či pěnoasfaltem. Tyto stroje se pomocí soustavy hadic spojují s recyklérem do sestavy a zajišťují mu kontinuální dodávku pojiva, které je vstřikováno přímo k mísícímu válci. V případě využití technologie recyklace s předem rozprostřeným cementem se k recykléru ještě připojuje zásobník či cisterna s vodou. Za recyklérem zůstává nově homogenizovaná asfaltová vrstva.

Díky kompaktním rozměrům není recyklér třeba přepravovat jako nadměrný náklad a je tedy vhodný i k použití pro krátkodobé práce.

OptiRec – working day snapshot

- day snapshot describes usual working day activities on the job site;
- machinery database including real-time data and site experience;
- ➡ four main activities/time sections have been identified:
 - **1.** Cold crank (engine starting, heating up);
 - 2. Net operation time (recycling);
 - 3. Technical breaks (e.g. waiting for the connection of other machines in the defined and used machinery set);
 - 4. Engine switched off (checking the machine liquids, milling drum, safety, refuelling, filling water/cement tank).

CREPASION AND A CONTRACT OF A

C

34

463 (7,75 h)

OptiRec – working day snapshot

Total non productive time (aprox. 25% of dayshift):				
	8/8	3 = 1 / 8 + 4 / 8 + 3 / 8		
	114 min =	14 min + 57 min + 43 mi	n	
			-	
al time = Col	d Crank (1x)+	Technical brake (3x) + Stop ti	ime (shut down)(2	
Time			Duration	
(min.)	Abbrev.	Description	(min.)	
DAY 1	-	Begin - 1. working day	-	
0-34	TB1	Technical break 1	34	
35-120	R1	Recycling - lane 1 - part 1	86	
121-137	TB2	Technical break 2	17	
138-223	R2	Recycling - lane 1 - part 2	86	
224-241	TB3	Technical break 3	17	
242-327	R3	Recycling - lane 2 - part 1	86	
328-344	TB4	Technical break 4	17	
345-431	R4	Recycling - Jane 2 - part 2	86	

Technical break 5

End - 1. working day

hainage	Day 1	Day 1
1200 m	R2 = 86 min Recycling	TB2 = 19 min Technical Break: (Iddle)
	TB1 = 19 min Technical Break: (Iddle)	R3 = 86 min Recycling
600 m	R1 = 86 min Recycling	TB3 = 19 min Technical Break: (Iddle)
	CC = 15 min Cold crank: (Iddle)	R3 = 86 min Recycling
0 m	ST1 = 21 min Stop time (Engine off):	ST1 = 21 min Stop time (Engine off):

DETAIL

TB5

432-465

OptiRec – Consultants and Sources

- Calculations supported by real life data from telematics of construction company (fuel consumption, daily usage);
- Real life data of emissions measured on site (during working process, during idling) - field emission laboratories;
- Truck dealers, trailer and fitting (prices, consumption data, truck technology, life cycle, maintenance);
- Mixing plant producers, owners and certification authorities (emission data);
- Engine producers (consumption data);
- Construction company foreman and managers discussion about the real processing on site;
- Road administrators and public investors (road authorities).

N77 Hennebry's Cross to Ardaloo - Followed project

- Comparison calculated OR data with real project
- Road rehabilitation via pavement cold recycling on site
- Basic data
 - Length: 1620 m
 - Width: 5,5 m
 - Rehab. depth 250-300mm

- Technology: x mm existing pavement recycled to achieve a residual binder content x 2.2%, cement content of x% added, CRF excluded and total moisture content of x%.
- Key machine used
 - Road Recycler Wirtgen WR 2400

C ce E eff S su T tra I inf

centre for effective and sustainable transport infrastructure

Technology description – OptiRec input data

Chainage	Description	Recycling technology
0-200	300mm existing pavement recycled to achieve a residual binder content of 2.2%, cement content of 1.5% added, CRF excluded and total moisture content of 4%.	CR - bit. emulsion, cement (2 layer recycling)
200-500	300mm existing pavement recycled (Pavement Option Type 1) to achieve a residual binder content of 3%, 1% cement content, 10% CRF and total moisture content of 4%.	CR - bit. emulsion, cement, agregate (2 layer recycling)
500-700	300mm existing pavement recycled (Pavement Option Type 1) to achieve a residual binder content of 3%, 1% cement content, 10% CRF and total moisture content of 4%.	CR - bit. emulsion, cement, agregate (2 layer recycling)
1690-1800	250mm existing pavement recycled to achieve a residual binder content of 2.2%; Cement content of 0%; CRF excluded from the mix, Total Moisture Content 4%.	CR - bit. emulsion, cement (2 layer recycling)
1800 - 2020	250mm existing pavement recycled to achieve a residual binder content of 3%; Cement content of 1%; CRF 10%; Total Moisture Content 4%	CR - bit. emulsion, cement, agregate (2 layer recycling)
2020 – 2450	250mm existing pavement recycled to achieve a residual binder content of 3%; Cement content of 1%; CRF 10%; Total Moisture Content 4%.	CR - bit. emulsion, cement, agregate (2 layer recycling)
700 – 970	300mm existing pavement recycled + 10% CRF + 1% Cement + Foam mix – Binder 125 Pen	CR - foamed bit., cement, agregate (2 layer recycling)
970-1180	300mm existing pavement recycled + 10% CRF + 1% Cement + Foam mix – Binder 125 Pen.	CR - foamed bit., cement, agregate (2 layer recycling)
1180-1400	300mm existing pavement recycled + 10% CRF + 1% Cement + Foam mix – Binder 125 Pen.	CR - foamed bit., cement, agregate (2 layer recycling)
1400-1620	300mm existing pavement recycled + 10% CRF + 1% Cement + Foam mix – Binder 125 Pen.	CR - foamed bit., cement, agregate (2 layer recycling)

Fuel consumption on project - Job site data vs. OptiRec calculation

Key machine: recycler Wirtgen WR 2400

Chainage	Project Consumption	OptiRec fuel consumption	OptiRec fuel consumption
Chanage	(job site data) (l)	on project (1) 2/3 Charge	on project (l) full Charge
0-200	340	554	827
200-500	450	831	1241
500-700	347	554	827
1690-1800	173	305	455
1800 - 2020	660	610	910
2020 - 2450	1050	1192	1778
700 – 970	620	748	1117
970-1180	1025	582	869
1180-1400	971	610	910
1400-1620	990	610	910
TOTAL	6626	6595	9844

