

Functional Durability-related Bitumen Specimation

Permanent Deformation (rutting):

Correlations and recommendations for further bitumen testing

<u>Fátima Batista</u> & Margarida Sá da Costa

Bernhard Hofko

Joëlle De Visscher & Tine Tanghe

Belgian Road Research Centre

21**E**<

LABORATÓRIO NACIONAL

DE ENGENHARIA CIVIL

CEDR call 2013 Energy Efficiency: end of program event - BRRC 10 Nov. 2016 ¹

Introduction

The higher the

temperature

• Permanent deformation or rutting

Visco-plastic deformations in the asphalt layer caused by the repeated passage of heavy vehicles, particularly under low speed traffic and high temperature conditions

The greater the tendency to **rutting**

Test methods to assess both bitumen properties and asphalt behaviour to

permanent deformation are typically conducted at elevated temperatures

Test methods to address bitumen properties and asphalt behaviour

• "Data form"

	Binder p	roper	ties				Mixture properties	
Elevated service	e temperature properties		Age	ing/Wheathering		Elevated	service temperature properties	_
Complex modulus	DSR		short term ageing	RTFOT		Stiffness	Stiffness test	
	other			TFOT		Permanent deformation	Wheel tracking test	x
Dynamic viscosity	Cone&Plate			RFT			Cyclic compression test	
	Coaxial cylinders			other			other	
	Capillary viscosimeter		long term ageing	PAV				7
	other			RCAT		Intermediate and	l/or low service temperature properties	
Zero Shear Viscosity	Oscillation method			Modified German RFT		Stiffness	Stiffness test	
	Creep method			Modified RTFOT		Strength	Indirect tensile test	x
	other						Direct tensile test	
Softening point	R&B	х		State binder			other	
Creep stiffness	Repeated Creep Test			Pure		Low temperature cracking	Thermal stress restrained specimen test	
Compliance and recovery	MSCR test			Modified	x		Crack propagation test	
	Elastic recovery	X		Unaged	x		other	
				Short term aged		Fatigue cracking	Fatigue test	x
Intermediate and/or low se	ervice temperature properties	;		Long term aged		Adhesion	Aggregate/Binder affinity	
Complex modulus	DSR			Recovered			Particle loss of Porous Asphalt	_
	other						other	
Penetration	Penetration	x				1		

CEDR call 2013 Energy Efficiency: end of program event - BRRC 10 Nov. 2016 ³

Test methods to address bitumen properties

> Viscosity

- Capillary Viscometer Test
- Coaxial Cylinder Viscosity (CCV) Test
- Cone and Plate Viscosity Test
- Creep Zero/Low Shear Viscosity (ZSV/LSV) Test
- Oscillation Zero/Low Shear Viscosity (ZSV/LSV) Test

> Softening point

• Ring and Ball (R&B) Test method

- > Elastic and recovery properties
 - Multiple Stress Creep and Recovery (MSCR) Test
 - Elastic Recovery Test
- > Complex modulus and phase angle
 - Dynamic Shear Rheometer (DSR) Test

> Performance Grading

• Performance Grade (PG) classification (Superpave high temperature parameter)

Test methods to address asphalt behaviour

> in Europe

- Wheel Tracking test, WTT (EN 12697-22)
- Cyclic compression test, CCT (EN 12697-25)

> other used tests

- SUPERPAVE shear tester, SST
- Simple Performance Tests, SPT (e.g. Dynamic modulus test; Flow Number; Flow Time)

Rutting process in asphalt mixes under repeated loads

Possible correlations derived from literature review

Bitumen viscosity

Number of found relevant studies

- Capillary Viscometer Test: (1)
- Coaxial Cylinder Viscosity Test: 0
- Cone and Plate Viscosity Test: 0
- Creep Zero/Low Shear Viscosity: 3 (4)
- Oscillation Zero/Low Shear Viscosity: 2

	Paper	Correlated data	Type of correlation	Data sets	R²	Comment
-	Paper 042	WT Rut Rate	Power	14	0.93	U / UA
	al., 2012)	(kPa*s)	(y= a.x ^b)	30	0.49	U & PMB
-	Paper 043	WT rut rate		29	0,87	U & PMB / UA
	(Morea, 2012)	(Pa*s)	y=a+b/x		0,86	& A
	Paper 047	Axial deformation	Power	12	0.92	U & PMB / A (TCCT@40°C)
	(Gungor & Sağlik, 2012)	vs. ZSV [Pa*s]	(y= a.x ^b)	12	0.84	U & PMB / A (TCCT@50°C)
	Paper 067 (Guericke & Schlame, 2008)	HWT Rut Depth (mm) vs. ZSV [Pa*s]	Power (y= a.x ^b)	25	0.81	U & PMB / A (WTT at +40°C)
				6	0.91	U & PMB / A (WTT at +50°C)
				11	0.91	U & PMB / A (WTT at +60°C)
		PRD [%] vs.	Linear	6	0.86	U
	Paper 499 (De Visscher & Vanelstraete,	EVI1["C]	(y=a+bx)	11	0.83	U & PMB
		PRD [%] vs.	Linear	11	0.85	
		Creep rate	(y= a + bx)	6	0.83	U
		[µm/m/n] vs.		11	0.77	U & PMB
	2009)	EVI1 Creep rate	(y= d + DX)	6	0.83	U
		[µm/m/n] vs.	Linear	11	0.76	
		EVT2	(y = a + bx)	11	0.70	U & FIID

Note: EVT – Equiviscous temperature

CEDR call 2013 Energy Efficiency: end of program event - BRRC 10 Nov. 2016 ⁶

Bitumen viscosity

- Studies on creep Zero/Low Shear Viscosity show that correlation between binder viscosity (ZSF/LSV) and wheel tracking parameter is good only when non modified binders are used. However, when the axial strain from Triaxial Cyclic Compression Tests (TCCT) is linked to ZSF/LSV, a good correlation can be achieved even when modified binders are taken into consideration
- Studies on oscillation Low Shear Viscosity reveal that good correlations could be achieved when:
 - the binder viscosity (ZSF/LSV) is linked with the rut depth (WT) and
 - the equiviscous temperature 1 (EVT1, temperature at which the viscosity measured at very low shear rate is 2000 Pa.s) is linked to the proportional rut depth (WT) and the creep rate (TCCT)

Possible correlations derived from literature review Bitumen softening point

Number of found relevant studies

• Ring and Ball (R&B) test method: 7

Paper	Correlated data	Type of correlation	Data sets	R²	Comment
Paper 026 (Eckmann et al., 2012)	Rut depth [mm]	Linear	4	0.82	U (20/30 pen grade) + PMB
	point [° C]	(y= a + bx)	4	0.99	U (35/50 pen grade) + PMB
Paper 042	Rut rate [mm/s]	Linear	19	0.68	U + PMB
(Robertus et al., 2012)	point [° C]	(y= a + bx)	7	0.95	U
Paper 067 (Guericke & Schlampe, 2008)	Rut depth [mm] vs. softening point [° C]	Linear (y= a + bx)	11	0.84	U + PMB
Paper 425 (Dreessen & Pascal, 2009)	Softening point [°C] vs. rut depth [mm]	Logarithmic (y= a lnx + b)	13	0.60	U + PMB
Paper 504 (Tusar et al., 2009)	Rut depth [mm] vs. softening point [°C]	Logarithmic (y= a lnx + b)	7	0.91	U + PMB
Paper 532 (Renken, 2012)	Rut depth [mm] vs. softening point [°C]	Non correlation found	N/A	N/A	N/A
Paper 558 (Reyes-Lizcan o et al., 2009)	Accumulated axial strain [%] vs. softening point [° C]	Linear (y= a + bx)	9	0.54	РМВ

Bitumen softening point by R&B test method

- Some studies find a reasonable correlation between R&B and wheel tracking results, even when polymer-modified binders are used for testing. But <u>these studies</u> <u>are generally limited to samples from the same binder source</u>, i.e. one unmodified bitumen-base was used to produce the polymer-modified samples. When a **mix of unmodified and modified binders** is used that are not from the same base bitumen, <u>poor correlations</u> were found.
- R&B is considered as a traditional test method with a large background in data. However, it is of general understanding that this test is <u>not suitable</u> for modified bituminous binder

Possible correlations derived from literature review Bitumen elastic and recovery properties

Number of found valous whether					Paper	Correlated data	Type of correlation	Data sets	R ²	Comment	
 Elastic Recovery Test: 0 						Paper 023 (Dueñas et	WTT, rut depth vs. J _{nr} (T=60 °C; t=3,2 kPa)	Linear (y= a + bx)	(4)	0,87	U, PmB and Crumb Rubber Modified
 Multiple Stress Creep and Recovery Test: 8 							Compliance in CCT vs. J _{nr} (T=60 °C; t=3,2 kPa)	Linear (y= a + bx)	(4)	0,69	U, PmB and Crumb Rubber Modified
Paper	Correlated data	Type of correlation	Data sets	R²	Comment	di.,2012)	% recovery in CCT vs. %Recovery MSCR	Linear (y= a + bx)	(4)	0,96	U, PmB and Crumb Rubber Modified
Paper 042 (Robertus et al., 2012)	WTT small size, rut rate vs. J _n (T=45 and 60 °C; t=1 kPa)	logy=a*log x	20	0,79 UA 0,90 RTFOT	5U, 11 PmB,2 wax modified, 2 special	Paper 035	(1=60 °C; t=3,2 kPa)				
Paper 185	ALF of FHWA vs. J_{nr} (T=64 ° C; t=25,6 kPa)	Linear (y= a + bx)	6	0,81	U and PmB	Gallet, 2012),	device, rut depth vs. J _{nr} (T=60 °C: t=3,2 kPa)		15	0,44	70, 6 PmB and 2 special All RTFOT
(D Angelo et al., 2007)	Field rutting (after 6 yrs) vs. J _{nr} (T=64 °C; t=0,8 kPa)	Linear (y= a + bx)	7	0,77	U and PmB	paper 425 (Dreessen& Pascal, 2009)	WTT large size	Linear (y= a + bx)			711 6 PmB and 2
Paper 516 (Laukkanen et al., 2014)	WTT large size device vs. J _{nr} (t= 3200 Pa)	Linear (ax+b) rut rate	9	0,98	U&PMB/UA	paper 501 (Dreessen et al., 2009)	vs. J _{nr} (T=60 °C; t=25,6 kPa)		15	0,77	special All RTFOT
Paper 562 (Tabatabaee& Tabatabaee, 2010)	unconf. cyclic creep test vs. J _{nr} (t= 3200 Pa)	not clear ? Linear ?	6	0,83	U&CMB / A U.D.C. at 40°C	MSCR p	parameters:	%R - Perc	ent reco	overy &	mpliance
								J _{nr} - HOH-IE	COVEIG	ne cleep co	inplance

CEDR call 2013 Energy Efficiency: end of program event - BRRC 10 Nov. 2016 ¹⁰

Bitumen recovery properties by the MSCR test

- In general, studies report <u>quite good correlations</u> often at <u>higher stress levels</u> for both **paving grade binders** & **polymer modified binders**
- The MSCR test result which is directly related to permanent deformation is Jnr.
 %R is correlated in only one study (cyclic creep test on asphalt). This correlation was also fairly good, although the number of binders considered was small (only 4).
- In most studies the MSCR test is compared to wheel tracking tests: either the French WT (large size device) or the Hamburg WT (small size device).
- From some of the papers reviewed, *it seems* that for <u>good correlations</u> with the permanent deformation tests on the asphalt mix, it is better:
 - to test the binders after <u>short-term ageing</u> (e.g. after RTFOT)
 - higher stress levels are used (\geq 3,2 MPa) in the MSCR tests
 - Further investigation is needed

Possible correlations derived from literature review

Bitumen complex modulus (G*) and phase angle (sin δ)

Number of found relevant studies

• Dynamic Shear Rheometer (DSR) Test: 6

DSR test parameters:

- G* Complex shear modulus
- $G^*/sin \delta$ @ 10 rad/s
- R_J unified evaluation index

Paper	Correlated data	Type of correlation	Data sets	R²	Comment
Paper 042 (Robertus et	WT Rut Rate vs.	Power	14	0,94	U / UA
al., 2012)	G* (kPa)	(y= a.x ^b)	30	<0,70	U & PMB / UA
Paper 047	TCCT Deformation	Power	12 0,37		U & PMB / A (TCCT@40°C)
Sağlik, 2012)	G*/sinδ (kPa)	(y= a.x ^b)	12	0,40	U & PMB / A (TCCT@50°C)
Paper 061.	WT Rut Depth (mm)	Power	3	0,93	U & PMB / UA
et al., 2008)	vs. G*/sinð (kPa)	(y=a.x ^b)	3	0,95	U & PMB / UA
Paper 067 (Guericke & Schlame, 2008)	HWT Rut Depth (mm) vs. $T_{(G^*/sin \delta=2.2kPa)}$ (°C)	Linear	11	0,77	U & PMB / A
	WT dynamic stability	Linear (y= a + bx)	7	0,99	U & PMB / UA
Paper 308.	(time/mm) vs. R _J	Grey relational analysis	2 5	0,89 0,90	U / UA PMB / UA
(Tan <i>et al.,</i> 2014)	WT dynamic stability	Linear (y= a + bx)	7	0,99	U & PMB / UA
	(time/mm) vs. G*/sinδ (KPa)	Grey relational analysis	2 5	0,89 0,59	U / UA PMB / UA
Paper 425 (Dreessen & Pascal,	FWT rutting (%) vs. G*/sinð (KPa)	Logarithmic (y= a lnx+b)	15	0,27	U & PMB / A

CEDR call 2013 Energy Efficiency: end of program event - BRRC 10 Nov. 2016 12

Bitumen complex modulus and phase angle by DSR test

- G* was only considered in one of the studies. In this case, a <u>good correlation</u> was found with the wheel tracking rut rate in the analysis of seven unmodified bitumen. Conversely, <u>very weak correlations</u> were detected for most polymer modified bitumen. G* generally underestimates the contribution to rutting resistance
- R_J (unified evaluation index) was considered in only one study and a <u>good correlation</u> was found both for **unmodified** and **PMB binders**
- Most of the papers determine G*/sin δ, finding that it is not suitable to evaluate the asphalt resistance to permanent deformation, when analyzing an ensemble of unmodified and polymer modified bituminous binders. Nevertheless, better correlations are achieved for higher frequencies

Recommendations

- > Most promising tests providing better correlations:
 - the Zero/Low Shear Viscosity (ZSV/LSV) by creep or oscillation test method [CEN/TS 15325 (ZSV); CEN/TS 15324 (LSV)]
 - the non-recoverable compliance (J_{nr}) from the Multiple Stress Creep and Recovery (MSCR) test method [EN 16659]
- Comparing both type of tests (Creep or oscillation Zero/Low Shear Viscosity and MSCR tests), it seems that the MSCR test method is more promising in a near future, given that, at the present, it seems to be an easier test method for the laboratories to implement, there is a European standard specifying the test and it is a method preferred in other countries as well, such as USA.
- However, further <u>research</u> (namely on the MSCR test stress level) is needed!

Thanks for your attention!

CEDR call 2013 Energy Efficiency: end of program event - BRRC 10 Nov. 2016 ¹⁵